成果、专家、团队、院校、需求、企业在线对接

  • 黄磊与江苏省生产力促进中心创新平台管理与服务处对接成功
  • 方成刚与江苏省生产力促进中心高层次人才与外国专家服务处对接成功
  • 赵金星与江苏省生产力促进中心企业咨询与知识产权服务中心对接成功
  • 王庆富与江苏省生产力促进中心高层次人才与外国专家服务处对接成功
  • 高文通与江苏省生产力促进中心高层次人才与外国专家服务处对接成功
  • 高文通与江苏省生产力促进中心企业咨询与知识产权服务中心对接成功

高效率铒配合物的合成及在光放大方面的应用

成果编号:10069
价格:面议
完成单位:南京大学
单位类别:985系统院所、211系统院所
完成时间:2014年
成熟程度:研制阶段
服务产业领域: 新材料
发布人:郑佑轩 离线
现代远程电子通讯以世界范围的光缆为基础,由于数据损失,需要通过掺铒的光纤放大器(EDFAs)来弥补光纤信号的衰减。但由于铒离子自身的吸收非常弱,EDFAs 需要沿着10-30米长的掺铒光纤轴向放置分离的泵浦激光器来实现粒子数反转,从而实现光增益。这既需要高能泵浦激光器,又不能将掺铒激光器的不同部件集成到同一基底上,这使得掺铒激光器笨重而昂贵。虽然敏化铒发光的研究工作已经进行多年,但一直未能制备出集合多种性能的适用材料。因为在大多数有机物中会出现CH或OH振动能量损失,铒离子的发射会被淬灭,从而使量子效率非常低。
634 次浏览 分享到

最近对接

南京腾亚精工科技有限公司
2015-09-10

成果介绍

科技计划:
成果形式:新技术
合作方式:技术转让、技术服务、技术入股
参与活动:
专利情况: 正在申请 ,其中:发明专利 0
已授权专利,其中:发明专利 2
专利号:
2011101925735,2012101374169
成果简介
综合介绍
现代远程电子通讯以世界范围的光缆为基础,由于数据损失,需要通过掺铒的光纤放大器(EDFAs)来弥补光纤信号的衰减。但由于铒离子自身的吸收非常弱,EDFAs 需要沿着10-30米长的掺铒光纤轴向放置分离的泵浦激光器来实现粒子数反转,从而实现光增益。这既需要高能泵浦激光器,又不能将掺铒激光器的不同部件集成到同一基底上,这使得掺铒激光器笨重而昂贵。虽然敏化铒发光的研究工作已经进行多年,但一直未能制备出集合多种性能的适用材料。因为在大多数有机物中会出现CH或OH振动能量损失,铒离子的发射会被淬灭,从而使量子效率非常低。
创新要点
该成果通过把高量子效率的全氟化铒配合物掺杂在全氟化的主体发色团分子中,实现了高吸收效率的主体发色团分子对铒离子的有效耦合,就消除了铒离子发射淬灭的问题(图1)。同时由于高原子序数的氟原子会增加自旋轨道相互作用,从而导致系间穿越(ISC)效应增加,这会增加因自旋而能与铒离子高效耦合的三线态。 进一步,在硅基底上成功制备了高光增益波导器件。使用非常低功率(3 mW,市售即可)蓝光LED作为泵浦光源,即可实现铒离子粒子数反转(图2),达到至少15 dB/cm以上的光增益。本方法优点是垂直泵浦结构不仅可以以廉价的LED取代了昂贵的激光器,而且不再用轴向泵浦,这就解决了目前硅基光子学中需要将激光器和波导精确地集成到一起这一重要技术难题。
技术指标
由于主体发色团中三线态具有很长的寿命,极大增强了敏化作用,使得敏化作用不仅来源于与铒离子最近的主体发色团分子。用这种方法,实现了在有机主体材料中的铒离子7%的量子效率(寿命为0.86 ms),敏化因子达到104数量级(其他体系的敏化因子只有大约为5),这在有机体系中是一个新的纪录。
其他说明
图1 全氟化铒配合物和主体发色团分子的吸收和发射光谱 图2 波导增益装置图和功率为3 mW的405 nm LED泵浦源所获得的波导信号增益图
完成人信息
姓名:对接成功后可查看
所在部门:对接成功后可查看
职务:对接成功后可查看
职称:对接成功后可查看
手机:对接成功后可查看
E-mail:对接成功后可查看
电话:对接成功后可查看
传真:对接成功后可查看
邮编:对接成功后可查看
通讯地址:对接成功后可查看
联系人信息
姓名:对接成功后可查看
所在部门:对接成功后可查看
职务:对接成功后可查看
职称:对接成功后可查看
手机:对接成功后可查看
E-mail:对接成功后可查看
电话:对接成功后可查看
传真:对接成功后可查看
邮编:对接成功后可查看
通讯地址:对接成功后可查看

咨询与解答